Multi-modal Recurrent Attention Networks for Facial Expression Recognition

Jiyoung Lee, Student Member, IEEE, Sunok Kim, Member, IEEE, Seungryong Kim, Member, IEEE, and Kwanghoon Sohn, Senior Member, IEEE

Abstract—Recent deep neural networks based methods have achieved state-of-the-art performance on various facial expression recognition tasks. Despite such progress, previous researches for facial expression recognition have mainly focused on analyzing color recording videos only. However, the complex emotions expressed by people with different skin colors under different lighting conditions through dynamic facial expressions can be fully understandable by integrating information from multimodal videos. We present a novel method to estimate dimensional emotion states, where color, depth, and thermal recording videos are used as a multi-modal input. Our networks, called multi-modal recurrent attention networks (MRAN), learn spatiotemporal attention volumes to robustly recognize the facial expression based on attention-boosted feature volumes. We leverage the depth and thermal sequences as guidance priors for color sequence to selectively focus on emotional discriminative regions. We also introduce a novel benchmark for multi-modal facial expression recognition, termed as multi-modal arousal-valence facial expression recognition (MAVFER), which consists of color, depth, and thermal recording videos with corresponding continuous arousal-valence scores. The experimental results show that our method can achieve the state-of-the-art results in dimensional facial expression recognition on color recording datasets including RECOLA, SEWA and AFEW, and a multimodal recording dataset including MAVFER.

Index Terms—Multi-modal Facial Expression Recognition, Dimensional (Continuous) Emotion Recognition, Attention Mechanism

I. INTRODUCTION

Understanding human emotions in visual contents has attracted significant attentions in numerous affective computing, image processing, and computer vision applications, such as health [1], personal assistance robots [2], and many other human-computer interaction systems [3].

To recognize facial expression, there are two major facial expression recognition (FER) models according to psychology research [4]: categorical model and dimensional model. Most efforts on FER [5]–[9] have focused on categorical emotion description, where emotions are grouped into discrete categories such as surprise, fear, etc. In the last few years, several approaches have tried to recognize the six basic emotions [5]–[11]. Although the state-of-the-art methods show satisfactory performance in categorical model, those categorical emotions do not cover the full range of possible emotions, which hinders the application of FER methods to practical systems.

To alleviate this limitation, dimensional emotion descriptions [8], [12]–[15] have attracted much attention, where emotions are described in a continuous space, consisting of two representative domains, i.e. arousal and valence. Arousal represents how engaged or apathetic a subject appears while valence represents how positive or negative a subject appears. Those domains can represent more complex and subtle emotions with the higher-dimensional descriptions compared to the categorical emotion description. Some researches proposed to estimate dimensional emotion states based on still frames [13], [14]. These methods effectively extract spatial information but fail to model the variability of temporal facial expression factors. Thus, researchers have tried to capture the dynamic variation from consecutive frames based on hand-crafted [16] or learned features [8], [15].

On the other hand, there have been attempts to recognize human emotion through various signals such as face, voice, and biological signals to improve the accuracy of estimated emotional state [16]–[18]. Especially, researchers in image processing have used depth sensors and 3D models to improve the performance of facial feature tracking and expression recognition [19]–[21]. Moreover, thermal sensor has also been used for these tasks [21], [22]. While it is relatively insensitive to illumination and skin color, it reflects skin temperature effectively to FER. Nevertheless, previous works have mainly utilized the temperature information as a single modality. Most recently, Zheng et al. [23] has built multi-modal 3D
In this paper, we present a novel framework, called multi-modal recurrent attention networks (MRAN), to recognize facial expression in the dimensional domain by exploiting not only a color recording video but also depth and thermal recording videos in a joint and boosting manner, as illustrated in Fig. 1. The key ingredient of this approach is to infer spatiotemporal attention part by leveraging complementary multi-modal information. The networks consist of four sub-networks; spatial encoder networks, temporal decoder networks, attention inference networks, and emotion recognition networks. First of all, we extract frame-wise facial features by spatial encoder networks. The intermediate features from this network are then fed to learn ‘where’ and ‘what’ to attend, guided by other modalities in temporal decoder networks. To this end, we propose an attention guided long-short term memory (AG-LSTM) module that learns emotionally attentive facial parts both spatially and temporally. Temporally-stacked feature volumes are multiplied with estimated attention volumes to make attention-boosted feature volumes in attention inference networks. Lastly, emotion recognition networks are formulated using successive 3D convolutional neural networks (3D-CNNs) to deal with the sequential data for recognizing dimensional emotion scores.

In addition, we build a multi-modal dimensional emotion recognition database including color, depth, and thermal videos, called multi-modal arousal-valence facial expression recognition (MAVFER). To the best of our knowledge, it is the first publicly available dataset for dimensional model of FER based on multi-modal facial videos. By focusing on discriminative parts, the proposed emotion recognition technique achieves the state-of-the-art performance on the multi-modal benchmark such as the MAVFER and various uni-modal benchmarks such as RECOLA [24], SEWA [25] and AFEW [26], [27].

To sum up, our contributions are three fold:

- We present a novel attention-based architecture to temporally estimate dimensional emotion model by jointly exploiting color, depth, and thermal videos.
- We propose a new module, called attention guided ConvLSTM (AG-LSTM), to capture the dynamic spatiotemporal attention in face videos, where color videos are guided from other modalities such as depth and thermal videos.
- We build a new multi-modal database including color, depth, and thermal videos for dimensional facial expression recognition, termed as MAVFER.

The rest of this paper is organized as follows. We discuss the related work in Sec. II and describe our emotion recognition algorithm in Sec. III. We introduce the novel MAVFER benchmark in Sec. IV. Sec. V presents the details of our experiments and Sec. VI concludes this paper.
C. Multi-modal Fusion

It is desirable to leverage multi-modal information to overcome the limitations of color recording visual contents in various computer vision applications such as image dehazing, image denoising, pedestrian detection, and human body segmentation, providing complementary information [48]–[51]. For example, Feng et al. [48] proposed an image dehazing method by modeling a dissimilarity between color and NIR images. The NIR image was used as a guidance image in image denoising applications [49] and as a supplementary data in pedestrian detection systems [50]. Kim et al. [49] leveraged CNNs to enhance a noisy RGB image using a aligned NIR image via alternating minimization. Park et al. [50] simultaneously fused each distinctive color and NIR features to get optimal performance. Incorporating visible images and other spectral images into a high-level framework provides complementary information and improves the performance. Palmero et al. [51] proposed human body segmentation dataset including color, depth, and thermal modalities to segment human subjects automatically in multi-modal video sequences based on learning-based fusion strategies. Recently, multi-modal recurrent architectures have attracted intense attention in various applications to performance improvement of each task [52], [53]. While [53] proposed multimodal layer that connects the language model part and the vision part, [52] transferred the information of each RGB and depth in information transfer layers, then infered the output (scene label). However, those methods directly fused multi-modal data without attention mechanism that can encode the importance of multi-modal input. Unlike these methods, we used a multi-modal fusion method to deduce the attention parts of face frames, not the part that deduces the results immediately.

D. Attention Inference

Attention is widely known as playing an important role in human perception system [54]. One important property of a human visual system is that one does not attempt to process a whole scene at once. Instead, humans exploit a sequence of partial glimpses and selectively focus on salient parts in order to capture the better visual structure [55].

Recently, there have been several attempts to incorporate attention processing to improve the performance of CNNs in image classification and object detection tasks [56], [57]. Meanwhile, Yang et al. [58] proposed two branch networks for visual sentiment analysis, where a first branch detects a sentiment specific soft map by training a fully convolutional network and a second branch utilizes both the holistic and localized information by coupling the sentiment map for robust classification. Moreover, Zhao et al. [59] introduced spatial and channel-wise attention with an emotion polarity constraint for visual sentiment analysis. However, these approaches used a static color image only to focus on sentiment analysis rather than FER.

Previous attention-based techniques using recurrent modules have estimated the attention by stack of LSTM modules [60], [61]. For example, Jia et al. [61] has proposed the extension of LSTM model, called gLSTM, for image caption generation. Although they employ temporal information, they cannot take a spatial correlation into consideration. To alleviate this limitation, Li et al. [62] have employed ConvLSTM to predict the spatiotemporal attention, but they fail to predict a pixel-level attention due to the lack of mechanism to deconvolutional ConvLSTM modules.

Multi-modal recurrent attention methods [63], [64] have proposed to exploit temporal attention with multi-modal input including audio, image, and text. Otherwise, we concentrated on spatiotemporal attention of multi-modal image sequences. For incorporating an attention mechanism into dimensional model of FER, we consider spatiotemporal facial attention that selectively focuses on emotionally salient parts by aggregating multi-modal facial videos.

III. PROPOSED METHOD

A. Problem Formulation and Overview

Given a multi-modal facial video clip composed of three modality sequences, i.e., color recording sequences I, depth recording sequences D, and thermal recording sequences F, the objective of our approach is to recognize a dimensional emotion score (e.g., arousal or valence) $y \in [-1, 1]$ for each input $\{I, D, F\}$. Concretely, to estimate human emotions for the multi-modal facial video clip, we adopt a strategy in a manner that attention cube is first extracted. Attention-boosted features are then used for emotion recognition. We present a novel learnable network that implicitly estimates multi-modal recurrent attentions. We formulate an encoder-decoder module in the multi-modal recurrent attention networks, where an encoder module consists of convolution layers to extract the
frame-wise features with spatial associations of each pixel and a decoder module consists of AG-LSTM layers followed by sequential upsampling to estimate spatiotemporal attention volumes. To fuse multi-modal information within the recurrent network, the hidden states on each module are connected each other. We further build an emotion recognition network to estimate continuous emotion scores by leveraging 3D-CNNs to encode both spatial and temporal information simultaneously. The configuration of the overall framework is depicted in Fig. 2.

This manuscript extends the conference version of [65] in the following aspects: (1) a multi-modal extension of URAN, called MRAN, (2) an introduction of novel database, called MAVFER, and (3) an extensive comparative study with state-of-the-art CNN-based methods on various datasets.

B. Network Architecture

In this section, we describe the details of multi-modal recurrent attention networks (MRAN) and uni-modal recurrent attention networks (URAN). We train a spatiotemporal attention implicitly during learning the emotion recognition module with the supervision of continuous emotion label only.

1) Spatial Encoder Networks: To extract features from each frame, we build the spatial encoder networks consisting of 2D convolutional layers and max-pooling layers. Since multi-modal input such as color, depth, and thermal have heterogeneous properties, we formulate the multi-modal encoder networks by temporally sharing the parameters of each network to extract common discriminative properties. Formally, we extract convolutional feature maps x^c, x^d, and x^f corresponding to color I, depth D, and thermal F in input sequences, where the weights and biases of each kernel are shared (i.e., replicated across all frames from same streams and updated together during training phase but not shared across spectral streams), enabling us to reduce the number of parameters and prevent the over-fitting problem.

The spatial encoder networks consist of successive 3×3 convolution layers and rectified linear unit (ReLU) layers, followed by max-pooling layers with stride 2×2.

2) Temporal Decoder Networks: To fuse the multi-modal input adaptively with spatiotemporal attention cube, we design the temporal decoder networks. We stack attention guided ConvLSTM (AG-LSTM) layers followed by upsampling layers that make the resolution of attention map same to the input features. Moreover, decoder networks help to weight the attention probabilities into the high resolution of face images for the precise estimation of salient parts. Specifically, for input features x^c, x^d, and x^f from the spatial encoder networks, the temporal decoder networks predict a spatiotemporal attention cube corresponding the feature activation of color X^c to focus more relevant parts.

In depth and thermal streams, we build the temporal decoder networks with basic ConvLSTM modules [66], termed as attention LSTMs (A-LSTM). Two guided streams have convolutional structures in both input-to-state and state-to-state transitions to maintain a spatial locality in the cell state while encoding the temporal correlation. Given input features x_{t-1} at time step $(t-1)$ from each stream, the ConvLSTM module updates as follows:

$$
i_t = \sigma(w_{xi} \ast x_t + w_{hi} \ast h_{t-1} + w_{ci} \ast c_{t-1} + b_i),$$
$$f_t = \sigma(w_{xf} \ast x_t + w_{hf} \ast h_{t-1} + w_{cf} \ast c_{t-1} + b_f),$$
$$c_t = f_t \odot c_{t-1} + i_t \odot \tanh(w_{xc} \ast x_t + w_{hc} \ast h_{t-1} + b_c),$$
$$o_t = \sigma(w_{xo} \ast x_t + w_{ho} \ast h_{t-1} + w_{co} \ast c_t + b_o),$$
$$h_t = o_t \odot \tanh(c_t),$$

where i_t, f_t, o_t, c_t and h_t represent the input gate, forget gate, output gate, cell activation, and cell output at time t, respectively. They are composed of 3D convolutional activations, \ast denotes the convolution operator and \odot denotes the Hadamard product. w is the filter connecting different gates, and b is the corresponding bias vector. The recurrent connections only operate over the temporal dimension, and use local convolutions to capture spatial context. However, original ConvLSTM module does not fully exploit the reciprocal information contained in the multi-modal videos.

Due to heterogeneous characteristics of multi-modal input, the direct fusion of these multi-modal input does not provide the optimal performance [51]. To fuse outputs of ConvLSTM

Fig. 2. The network configuration of MRAN which consists of four sub-networks including spatial encoder networks, temporal decoder networks, attention inference networks, and emotion recognition networks. Given color, depth, and thermal facial videos, MRAN estimates an attention cube and then recognizes output valence scores. Especially, red lines indicate temporal connection between AG-LSTM in the color stream and A-LSTM in depth and thermal streams.
modules across multi-modal streams with learnable modules, we thus extend existing ConvLSTM module in a way that the hidden states of each spectral stream are connected to guide the attention estimation in a boosting fashion. Specifically, given multi-modal features x_{t}^{I}, x_{t}^{D}, and x_{t}^{F}, the guided attention ConvLSTM (AG-LSTM) module updates at time step t as follows:

$$i_{t} = \sigma (w_{xi} * x_{t}^{I} + \sum_{g} w_{hi}^{g} * h_{t-1}^{g} + w_{ci} * c_{t-1} + b_{i}),$$

$$f_{t} = \sigma (w_{xf} * x_{t}^{I} + \sum_{g} w_{hf}^{g} * h_{t-1}^{g} + w_{cf} * c_{t-1} + b_{f}),$$

$$c_{t} = i_{t} \odot c_{t-1} + f_{t} \odot \tanh(w_{xc} * x_{t}^{I} + \sum_{g} w_{hc}^{g} * h_{t-1}^{g} + b_{c}),$$

$$o_{t} = \sigma (w_{xo} * x_{t}^{I} + \sum_{g} w_{ho}^{g} * h_{t-1}^{g} + w_{co} \odot c_{t} + b_{o}),$$

$$h_{t}^{I} = o_{t} \odot \tanh(c_{t}),$$

where $g \in \{I, D, F\}$ and h^{g} are hidden features from multi-modal streams, e.g., color, depth, and thermal streams. Namely, h^{D} and h^{F} are hidden features from A-LSTM modules and h^{I} is a hidden feature from AG-LSTM module. The key challenge in multi-modal recurrent attention networks is how to borrow complementary information from each other. As hidden states in conventional LSTM modules are represented by taking the previous hidden states and current inputs, it can be leveraged as frame-level output [62]. To benefit from the joint usage of the multi-modal input, we use hidden states of depth and thermal streams with different weights w_{hi}^{g} as guidance information for color stream. To exploit the inter relationships between hidden representations from multi-modal input, we adopt weighted aggregating hidden states of other A-LSTM outputs to combine the information from each modality as depicted in as depicted in Fig. 2. Thus, the hidden representations from one time step of depth and thermal domain will be fed into target domain, i.e. color, at the next time step for refinement of attention as shown in Fig. 3.

The temporal decoder networks consist of successive 3×3 kernel in both A-LSTM and AG-LSTM modules and tanh [66]. Furthermore, we progressively enlarge the spatial resolution of stacked feature activations through sequential deconvolutions similar to [67]. We build the sequence of deconvolution with a factor of 2 after each LSTM module. Note that unlike other deconvolution layers as in [67], we utilize the proposed recurrent modules that encode the temporal correlation across inter-frames while preserving the spatial structure over sequences.

3) Attention Inference Networks: The multi-modal recurrent attentions are combined with input features as a soft attention in a manner that the attention is multiplied to feature activations of color frames. The attention cube obtained by AG-LSTM module is normalized using spatial softmax function as follows:

$$A_{t,i} = \frac{\exp(H_{t,i})}{\sum_{j} \exp(H_{t,j})},$$

where $H_{t,i}$ is the hidden state and $A_{t,i}$ is an attention cube for each location $i \in \{1, \cdots, H \times W\}$ and time step $t \in \{1, \cdots, T\}$.

4) Emotion Recognition Networks: We design emotion recognition networks to recognize final dimensional emotion states from attention-boosted features. Unlike existing emotion recognition methods that consider the facial expression in a static image only [8], [35], we aim to simultaneously encode spatial and temporal cues. Specifically, by leveraging the multi-spectral recurrent attention $A_{t,T}$, our method produces attention boosted features for target modality, i.e., color. While the 2D-CNNs [35] can be used to predict the emotion for the facial video, it processes multiple input frames as different input channels independently, thus providing limited performances. To overcome this limitation, we employ the 3D-CNNs to deal with temporal information, which simultaneously consider spatial and temporal correlations across the input frames and directly regress the emotion.

To elegantly incorporate the spatiotemporal attention to FER through 3D-CNNs, we extract convolutional feature activation X' using a 3D convolutional layer for the color video I as an input. Then, we multiply spatiotemporal attention A across the feature X' to estimate the attention-boosted feature activations as follows:

$$X'' = A \odot X',$$

where \odot denotes the Hadamard product and X'' is a final refined feature map. Note that the pipeline for emotion recognition with the 3D-CNNs is inspired by the recognition networks in action recognition [68], because 3D-CNNs is well suited for spatiotemporal feature learning [68] owing to 3D convolution and 3D pooling layers.

By leveraging the attention-boosted feature cubes X'', our method then estimates a dimensional emotion scores y with 3D-CNNs [68] to simultaneously encode spatial and temporal information. Temporally stacked attentive feature cube pass the three 3D convolutional layers and 3D pooling layers which have $3 \times 3 \times 3$ kernels and $2 \times 2 \times 2$ kernels, respectively. Table I summarizes the overall network configuration of MRAN. The last fully-connected layer has a single output channels as f and we use a linear regression layer to estimate the output valence. We use tanh activation function followed by the last fully-connected layer that limits the range of output estimator to $[-1, 1]$.

5) Uni-modality Model: MRAN described so far can be simplified in a uni-modal framework, called Uni-modal Recurrent Attention Networks (URAN), to recognize human...
emotion from color recording videos only. In the networks, all AG-LSTM modules are replaced with A-LSTM modules. Because our two types of models can be applied to various types of visual signals capturing facial expression, MRAN and URAN can be utilized for various environments.

C. Loss Function

During training, we minimize a mean squared error between estimated labels and given ground-truth labels. Given a collection of mini-batch M training sequences, a mean squared error criterion is adopted, defined as follows:

$$
\mathcal{L} = \frac{1}{M} \sum_{m=1}^{M} \| \hat{y}_m - y_m \|_2, \quad (5)
$$

where \hat{y}_m and y_m are ground-truth valence labels and predicted labels, respectively. MRAN is learned only with a ground-truth valence label as a supervision. Note that our method does not need explicit pre-defined AUs [69] and salient facial regions (e.g., facial landmarks). All parameters in MRAN can be implicitly learned using a stochastic gradient descent scheme.

IV. MAVFER Benchmark

Most existing emotion recognition datasets [24], [25], [41], [43]–[45] have focused on the color image analysis, and thus they cannot be used for multi-modal emotion recognition. In this section, we introduce a new benchmark for dimensional emotion recognition from multi-modal input such as color, depth, and thermal.

A. Data Acquisition

1) Recording System Setup and Synchronization: The data capture system included Microsoft Kinect v2 with time-of-flight sensor 1 and FLIR A65 thermal imaging temperature sensor as shown in Fig. 5. We used Microsoft Kinect v2 to obtain RGB and depth videos. It has been known that the Kinect v2 provides sharper and more detailed depth with high-quality color streams compared to the Kinect v1 with structured light method. The resolution of each color and depth streams were 1920 × 1080 and 512 × 424 pixels, respectively. We set a threshold of 0.5–7 meters due to inaccuracies in depth measurements at near and far ranges. The field of view (FoV) is $70^\circ \times 60^\circ$. Thus, we set the Kinect v2 camera far from 1 meters to subjects on a straight line as shown in Fig. 5.

Furthermore, we observe that thermal images are sensitive to skin temperatures while they are insensitive to lighting conditions and skin color, as shown in Fig. 4, and thus the usage of thermal images would be good indicator for improving facial expression recognition. We used thermal camera that is FLIR A65 thermal imaging temperature sensor. This camera captures thermal videos in resolution of 640 × 512 per frame with temperature range of -25 and 135°C. The spectral range is 7.5–13μm and FoV is $45^\circ \times 37^\circ$. In order to better synchronize all sensors in our system, we set the capture rate of the thermal sensor to 10 fps. The thermal sensor stands next to the interviewer in a fixed position as shown in Fig. 5.

Note that the system synchronization is critical for data collection from various modality sensors. Since each sensor has its own machine to control, we developed a program to trigger the recording from the start to the end across all three sensors simultaneously. It is realized through the control of a master machine by sending a trigger signal to three sensors concurrently.

2) Participants: 100 subjects have been recruited to participate in data collection from which 46 subjects were recorded.

1) Recording System Setup and Synchronization: The data capture system included Microsoft Kinect v2 with time-of-flight sensor 1 and FLIR A65 thermal imaging temperature sensor as shown in Fig. 5. We used Microsoft Kinect v2 to obtain RGB and depth videos. It has been known that the Kinect v2 provides sharper and more detailed depth with high-quality color streams compared to the Kinect v1 with structured light method. The resolution of each color and depth streams were 1920 × 1080 and 512 × 424 pixels, respectively. We set a threshold of 0.5–7 meters due to inaccuracies in depth measurements at near and far ranges. The field of view (FoV) is $70^\circ \times 60^\circ$. Thus, we set the Kinect v2 camera far from 1 meters to subjects on a straight line as shown in Fig. 5.

Furthermore, we observe that thermal images are sensitive to skin temperatures while they are insensitive to lighting conditions and skin color, as shown in Fig. 4, and thus the usage of thermal images would be good indicator for improving facial expression recognition. We used thermal camera that is FLIR A65 thermal imaging temperature sensor. This camera captures thermal videos in resolution of 640 × 512 per frame with temperature range of -25 and 135°C. The spectral range is 7.5–13μm and FoV is $45^\circ \times 37^\circ$. In order to better synchronize all sensors in our system, we set the capture rate of the thermal sensor to 10 fps. The thermal sensor stands next to the interviewer in a fixed position as shown in Fig. 5.

Note that the system synchronization is critical for data collection from various modality sensors. Since each sensor has its own machine to control, we developed a program to trigger the recording from the start to the end across all three sensors concurrently.

2) Participants: 100 subjects have been recruited to participate in data collection from which 46 subjects were recorded.

with a fully multi-spectral setting, and 17 subjects agreed to share their data. There are 7 males and 10 females, with ages ranging from 21 to 38 years old. All subjects have same mother languages as Korean. Following the IRB approved protocol, the informed consent form was signed by each subject before starting of data collection.

3) Emotion Elicitation: To evoke authentic and ecologically-valid facial expression, we first showed relaxed videos in 10 minutes to subjects that make feel comfortable. To elicit various emotion expression of people, we designed a protocol with an unannounced social interview in 5 minutes with subjects to interviewees and interviewers who use another language (English). When interviewers ask questions, people feel a variety of emotion due to the interaction with the interviewers. In their self-reports, subjects also said they shared their data. There are 7 males and 10 females, with ages ranging from 21 to 38 years old. All subjects have same mother languages as Korean. Following the IRB approved protocol, the informed consent form was signed by each subject before starting of data collection.

B. Data Pre-processing

1) Calibration: To calibrate color and depth streams, we used iai Kinect v2 library [70]. We acquired several pieces of color, IR, and raw depth images containing a checkerboard pattern of 5×7. The distance between corners was set to 0.03m. Using the calibration toolbox provided in the iai Kinect v2 library [70], we estimated the shift parameter between IR and depth images and the projection matrix between IR and color images. The warping process consists of two parts. The depth map was warped into IR image coordinate using a shift parameter. The depth map on IR camera coordinate was finally projected into the RGB image coordinate. The library performed warping into the cropped RGB image coordinates. After projecting depth values to the RGB camera coordinate, we discarded the region exceeding the field of view of depth camera. Thus, the cropped color and depth images have 1408×792 resolutions.

2) Face Detection: To recognize the emotion from color recording videos, we first detected the human face in each color frame using face and landmark detectors in Dlib-ml [71], and then cropped the detected face region. We then mapped the detected landmark points to pre-defined pixel coordinates in order to ensure correspondences of the eye and nose coordinates between adjacent frames [35], [40]. For the depth stream, we warp the detected landmark points from color image to depth with calibration parameters. On the other hand, we use FLIR’s ResearchIR software to detect FLIR face region. Fig. 6 illustrates sample data sequences of multi-modal from a subject.

C. Annotation

We modified a web-based annotation interface [40] to annotate affective dimensions. The definition of valence and arousal dimensions was adapted from [16]. We totally hired 6 annotators aged between 20 and 25, and divided them into 2 teams. 3 annotators were assigned to each video sequence for more accurate annotations. The annotators were instructed to simultaneously and time-continuously consider the intensity of valence and arousal during the annotation. The two affective dimensions (arousal and valence) were annotated using a slider with values ranging from -10 to 10 and a step of 1. Each annotator was instructed orally and received instructions with a 3 pages document explaining in details the procedure and including some examples of annotations to follow for the annotation task. In order to deal with issue of missing values in the annotations, data were interpolated using 1D bilinear interpolation. Following the previous FER benchmark [24], we refined final ground truth arousal and valence scores by using mean filtering on all annotations of a same sequence.

D. Analysis

In total, we annotated more than 27K frames with frame levels valence and arousal intensities in the range of -10 to 10. The number of frames at each video is shown in Fig. 7. In Fig. 8, we show the distribution of the values of arousal and valence in the MAVFER benchmark as well as histogram of arousal and valence in Fig. 9. We compared MAVFER benchmark with other public datasets for dimensional emotion recognition such as RECOLA [24], SEWA [25], AFEW-VA [40], BP4D [19], and BP4D+ [23]. Even if the datasets for multi-spectral facial expression analysis including BP4D and BP4D+ collected large-scale 3D facial models with Di3D dynamic imaging

(c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Yonsei Univ. Downloaded on June 10, 2020 at 07:31:46 UTC from IEEE Xplore. Restrictions apply.
system in Table II, they annotated AUs and discrete emotion categories not including arousal and valence scores. Compared with those datasets, we collect the videos from participants without artificial acting for more natural emotion elicitation.

For a statistical analysis of the annotation of the affective behaviors, we computed the MSE, the mean correlation coefficient, and the Cronbach’s α [24] in Table III. The Cronbach’s α is an estimate of a reliability between annotations; $\alpha > 0.7$ is considered as an acceptable internal consistency and $\alpha > 0.8$ is considered as a good consistency. Results from the raw data show that their internal consistency is acceptable for valence and arousal after zero-mean normalization.

![Fig. 8. Distribution of arousal and valence scores in MAVFER benchmark.](image)

![Fig. 9. Histogram of arousal and valence scores in MAVFER benchmark.](image)

Table II

<table>
<thead>
<tr>
<th>Database</th>
<th>Subjects</th>
<th>Annotation type</th>
<th>Amount of data</th>
<th>Elicitation method</th>
<th>Environment</th>
<th>Illumination</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECOLA [24]</td>
<td>27 participants</td>
<td>Dimensional</td>
<td>27 videos of 5 mn.</td>
<td>Online interactions</td>
<td>Controlled</td>
<td>Controlled</td>
<td>Color</td>
</tr>
<tr>
<td>SEWA [25]</td>
<td>84 participants</td>
<td>Dimensional</td>
<td>300 videos of 6s to 4mn.</td>
<td>Human-computer interaction</td>
<td>webcam</td>
<td>Indoor-In-the-Wild</td>
<td>Color</td>
</tr>
<tr>
<td>AFEW [26], [27]</td>
<td>428 subjects</td>
<td>Categorical</td>
<td>1368 video clips, 600 video clips.</td>
<td>Movie actors</td>
<td>In-the-Wild</td>
<td>In-the-Wild</td>
<td>Color</td>
</tr>
<tr>
<td>AFEW-VA [40]</td>
<td>240 subjects</td>
<td>Dimensional</td>
<td>328 videos of 1-4 mn.</td>
<td>Movie actors</td>
<td>In-the-Wild</td>
<td>In-the-Wild</td>
<td>Color</td>
</tr>
<tr>
<td>BP4D [19]</td>
<td>41 subjects</td>
<td>Categorical</td>
<td>1400 videos of 1-2 mn.</td>
<td>Actors</td>
<td>Controlled</td>
<td>Controlled</td>
<td>3D Face</td>
</tr>
<tr>
<td>BP4D+ [23]</td>
<td>140 subjects</td>
<td>Categorical</td>
<td>17 videos of 1-4 mn.</td>
<td>Actors</td>
<td>Controlled</td>
<td>Controlled</td>
<td>Color + Depth + Thermal</td>
</tr>
<tr>
<td>MAVFER</td>
<td>17 participants</td>
<td>Dimensional</td>
<td>17 videos of 1-4 mn.</td>
<td>Human-human interaction</td>
<td>Controlled</td>
<td>Controlled</td>
<td>Color + Depth + Thermal</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Dimension</th>
<th>% pos.</th>
<th>Corr.</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arousal</td>
<td>45.4</td>
<td>0.424</td>
<td>0.72</td>
</tr>
<tr>
<td>Valence</td>
<td>46.9</td>
<td>0.479</td>
<td>0.79</td>
</tr>
</tbody>
</table>

V. Experimental Results and Discussion

In this section, we present a detailed analysis and evaluation of our approach on dimensional emotion recognition. Specifically, we firstly evaluated the influence of our proposed method with the MAVFER benchmark with ablation evaluations, with respect to 1) various combination of different modalities such as color, depth, and thermal, 2) the proposed sub-networks, and 3) length of the clips. Note that we re-formulate multi-modal recurrent attention network (MRAN) to the uni-modal recurrent attention network (URAN) to compare our method with the state-of-the-art methods on two publicly available benchmark datasets performing in the color information only.

A. Implementation Details

We implemented our network using the PyTorch library [72]. To reduce the effect of overfitting, we employed the dropout scheme with the ratio of 0.5 between fully-connected layers, and data augmentation schemes such as flips, contrast, and color changes. The videos in the training set were split into non-overlapped 16-frame clips, and thus the input of model has a frame rate of 4 fps. At testing phase, we split a video into 16 frame clips with a 8 frame overlap between two adjacent clips, and then average two clip predictions framewise. For optimization, we choose Adam [73] due to its faster convergence than standard stochastic gradient descent with momentum. For multi-modal emotion recognition, we trained MRAN from scratch using mini-batches of 4 clips, with initial learning rate as $\lambda = 1e^{-4}$. Meanwhile, we also trained URAN from scratch with mini-batches of 8 clips and initial learning rate as $\lambda = 1e^{-4}$ for the comparison with subsets of RECOLA [16] and SEWA [25] benchmarks. The filter weights of each layer were initialized by Xavier...
distribution, which was proposed by Glorot and Bengio [74], due to its properly scaled uniform distribution for initialization. In the SEWA and RECOLA datasets, we detected the face in each video frame using face and landmark detector in Dlibml [71], and then cropped the detected face region for all database. We then mapped the detected landmark points to pre-defined pixel locations in order to normalize the eye and nose coordinates between adjacent frames to recognize the emotion from a facial video.

B. Experimental Settings

For baseline models, we reported the results of the VGG-16 [75] and ResNet-50 [76] networks pre-trained on the ImageNet dataset [77]. We also considered the VGG-Face network pre-trained on VGG-Face dataset [78]. In order to consider the temporal information between the frames, we extended the VGG-Face network to the CNN-LSTM model, which consists of one fully-connected layer and two hidden layers with 128 units similar to [41]. In the following, we evaluated the proposed method in comparison to the baseline approach such as AV+EC challenge baseline methods [16], [18]. Several deep CNN-based approaches were also compared, such as Chen et al. (LGBP-TOP + LSTM) [29], He et al. (LGBP-TOP + Bi-Dir. LSTM) [36], Chao et al. (LGBP-TOP + LSTM + e-loss and CNN + LSTM + e-loss) [33], and Khorrami et al. (CNN+RNN) [35] with RECOLA dataset. We reimplemented methods of [35] and evaluated on the SEWA and MAVFER datasets. Moreover, we reimplemented AffWildNet [41] to compare in MAVFER dataset. For all the investigated methods, we interpolated the valence scores from adjacent frames related to dropped frames that the face detector missed. In addition, following the AV+EC’s post-processing procedure of predictions [16], [46], we applied the same chain of post-processing on the obtained predictions; smoothing, centering and scaling except time-shifting.

1) Datasets: In experiments, we used the proposed MAVFER dataset splitted into 12 training and 5 test videos. Furthermore, we also used RECOLA dataset [24] and SEWA dataset [25] used in AV+EC 2015 [16] and AV+EC 2017 [18] challenges, respectively.

The AV+EC 2015 challenge used the subset of RECOLA dataset [24], which was recorded for 27 French-speaking subjects. The dataset contains two types of continuous labels, arousal and valence, which were manually annotated by six annotators. Each continuous emotion label ranges from [-1, 1]. Raw interview video frame has 1080 × 1920 resolution and 16 fps. Since the test set labels were not readily available, we evaluate all of our experiments on the development set.

Compared to RECOLA dataset, the subset of SEWA dataset [25] used in the AV+EC 2017 challenge was acquired in various places such as home and work place with diverse personal equipments such as webcams and microphones. The dataset contains three types of continuous labels such as arousal, valence and liking, which were manually annotated by six annotators. Thus, it is more challenging and tailors to real-life applications of affective computing technologies than RECOLA dataset.

2) Metrics: For quantitative evaluation, we computed three metrics: (i) Root Mean Square Error (RMSE), (ii) Pearson Correlation Coefficient (CC), and (iii) Concordance Correlation Coefficient (CCC) as used in [35]. First of all, RMSE is the most common evaluation metric in a continuous domain which is defined as:

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}
\]

where \(\hat{y}_i\) and \(y_i\) are the ground truth and predicted labels of the \(i\)th sample, and \(n\) is the number of samples in the evaluation set. Note that RMSE-based evaluation can heavily weigh the outliers [18], and thus it is not able to provide the covariation of prediction and ground-truth to show how they change with respect to each other. Pearson correlation coefficient (CC) is therefore proposed in [18] to overcome this limitation:

\[
\rho = \frac{COV(\hat{y}, y)}{\sigma_{\hat{y}}\sigma_y} = \frac{E[(\hat{y} - \mu_{\hat{y}})(y - \mu_y)]}{\sigma_{\hat{y}}\sigma_y},
\]

where \(\rho\) indicates the Pearson correlation coefficient, \(\sigma^2_{\hat{y}}\) and \(\sigma^2_y\) are the variances of the predicted and ground truth values, and \(\mu_{\hat{y}}\) and \(\mu_y\) are their means, respectively. Especially, the CCC tries to measure the agreement between two variables using the following expression:

\[
\rho_c = \frac{2\rho\sigma_{\hat{y}}\sigma_y}{\sigma^2_{\hat{y}} + \sigma^2_y + (\mu_{\hat{y}} - \mu_y)^2}
\]

where \(\rho_c\) indicates the concordance correlation coefficient. Unlike CC, the predictions that are well correlated with the ground-truth but shifted in value are penalized in proportion to the deviation in CCC. The highest CC and CCC values thus represent the best recognition performance.

C. Results on MAVFER Benchmark

1) Analysis on Multi-modal Input: To verify the effect of the multi-modal input to estimate dimensional emotion, we analyzed the performance of each modality in Table IV. We set up the performance using only color videos as baseline performance. By leveraging depth videos, the estimation performances improve 0.01 and 0.003 for CC and CCC scores compared to the baseline. In respect to thermal videos, the estimation performances were 0.035 and 0.017 higher for CC and CCC scores than the baseline. When we used all the color, depth, and thermal videos for learning the networks, the estimation performances were 0.052 and 0.035 higher.

<table>
<thead>
<tr>
<th>Color</th>
<th>Depth</th>
<th>Thermal</th>
<th>RMSE</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.120</td>
<td>0.511</td>
<td>0.486</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td>0.134</td>
<td>0.379</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>0.145</td>
<td>0.368</td>
<td>0.331</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td>0.117</td>
<td>0.521</td>
<td>0.489</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td>0.114</td>
<td>0.546</td>
<td>0.503</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>0.112</td>
<td>0.563</td>
<td>0.521</td>
</tr>
</tbody>
</table>

TABLE IV

EFFECTIVENESS OF MULTI-MODAL INPUT FOR DIMENSIONAL EMOTION RECOGNITION. MRAN IS TRAINED ON THE TRAINING AND VALIDATION SETS AND EVALUATED WITH THE TEST SET ON THE MAVFER BENCHMARK.
Fig. 10. Visualization of spatiotemporal attention cube learned by MRAN for two subjects in MAVFER benchmark: Attention score is normalized by the spatial softmax. Red indicates higher weight of the frame and blue indicates lower weight. Specifically, the areas around eyes and mouth are considered to be important to estimate emotion.

<table>
<thead>
<tr>
<th>TABLE V</th>
<th>ABLATION STUDY OF URAN ON RECOLA BENCHMARK [24]. ‘S.E.’ AND ‘T.D.’ DENOTE SPATIAL ENCODER AND TEMPORAL DECODER, RESPECTIVELY. WITH ALL COMPONENTS OF URAN, WE ACHIEVE THE BEST RESULT IN ALL MEASUREMENTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-CNN</td>
<td>3D-CNN</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

for CC and CCC scores than the baseline which shows the robustness of using multi-modal input to estimate the dimensional emotion. The usage of multi-modal input also showed the lowest value 0.112 for RMSE score. Although the bi-modal input improves the recognition ability, the full usage of multi-modal input including color, depth, and thermal shows the best performance. Note that the A-LSTM module was used for input of single modality instead of the AG-LSTM module.

2) The Effectiveness of Attention Inference: In Table V, we first evaluated the effects of each component in URAN on RECOLA benchmark. In the first column of Table V, we replace all components to 2D convolutional layers, and weights of 2D convolutional layers are shared temporally. Second column of Table V investigates the effectiveness of 3D convolutional operation. To analyze the performance gain of attention networks, we removed the attention networks in the proposed URAN, and fed the 3D convolutional feature activations into emotion recognition networks. In addition, performance was measured without temporal decoder networks that replaced the A-LSTM modules with 2D convolutional layers. We observe that all components of URAN make substantial contributions to the performance improvement. Especially, the attention networks more improved CC and CCC. To prove the effect of the attention networks in multi-modal setting, we remove them in MRAN and estimate the emotion using the emotion recognition networks only. As shown in Table VI, in particular, the attention networks, i.e. spatial encoder networks and temporal decoder networks, have improved the performance more in MRAN.

To verify the effectiveness of the attention to estimate...
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2020.2996086, IEEE Transactions on Image Processing

Fig. 11. Ablation study of MRAN for various length of clips on MAVFER benchmark. For quantitative evaluation, we computed three metrics: (i) Root Mean Square Error (RMSE), (ii) Pearson Correlation Coefficient (CC), and (iii) Concordance Correlation Coefficient (CCC) When we set \(T \) to 16, it shows best performance. Thus, we use \(T = 16 \) frames as length of input sequence in the remaining experiments.

![Graphs of RMSE, CC, and CCC metrics](image)

Fig. 12. Estimated valence graph of two subjects in the development set on MAVFER benchmark with [35] and URAN. The x-axis is the number of frames detected in face detector, and the y-axis is the valence score. Red line is ground truth labels and blue line is estimated scores. Note that these graphs are not interpolated at the dropped frames.

![Graphs of valence scores for different subjects](image)

dimensional emotions, we visualized the normalized attention cube where model focused on parts of the face, while improving the emotion recognition performance. As shown in Fig. 10, the proposed model effectively learns the important parts in consecutive frames in the same subjects, especially eyes and mouth. At different frames, the proposed model captures different parts, since AG-LSTM deals with spatiotemporal correspondence. Without depth and thermal sequences, we sometimes fail to capture spatiotemporal attention as shown in Fig. 10 (d). The proposed attention cube highlights salient parts of emotion recognition and implicitly learn to detect specific AUs in facial images.

3) The Effectiveness of the Number of Frames: In Fig. 11, we estimated RMSE, CC and CCC scores for MRAN on the MAVFER with respect to various length of clip. Overall, CC and CCC scores increase with the number of frames until 16 frames. However, CC and CCC scores decrease after 16 frames. In addition, RMSE was also increased after 16 frames, which means that the overlength of clip decreases the performance since the irrelevant information may be included in the current frame [79]. Thus, we used the 16 frames as a length of clip for other experiments.

4) Comparison to Other Methods: Table VII summarizes the RMSE, CC and CCC values obtained when applying all the developed CNN-based architectures including VGG-16, ResNet-50 and VGG-Face, and CNN-RNN architectures including VGG-Face-LSTM, Khorrami et al. [35] and AffWildNet [41]. Our method is based on the CNN-RNN architectures to infer the attention volume. Generally, CNN-RNN architectures show the higher performance than CNN-based architectures. Moreover our proposed method provides state-of-the-art performance with the same length of clip, which means that applying the attention mechanism into basic CNN-RNN architecture to identify crucial facial areas for FER is highly effective compared to other approaches. We trained all the methods with color videos in MAVFER dataset, then compared to color stream with MRAN, i.e. URAN. Note that we reimplemented the methods of AffWildNet [41] and Khorrami et al. [35] with PyTorch library to compare with our method. In Fig. 12, we compared the estimated valence...
graph from [35] and URAN, which show that URAN outperforms [35].

D. Results on Other Benchmarks

In the following, we evaluated the proposed network through comparisons to state-of-the-art CNN-based approaches [29], [33], [35], [36] on the RECOLA dataset [24], which has been adopted for the AudioVisual Emotion recognition Challenges (AV+EC) in 2015 [16] and 2016 [46]. We also compared the proposed method to the state-of-the-art on the subset of SEWA dataset [25] used in AV+EC in 2017 [18]. Because all the RECOLA and SEWA benchmarks are composed of only color recording facial videos, we reformulated multi-modal recurrent attention network (MRAN) to the uni-modal recurrent attention network (URAN), which replaced the proposed AG-LSTM modules to simple A-LSTM modules for this comparison.

We compared URAN with the state-of-the-art methods such as CNN-based approaches [35] and LSTM-based approaches [33] on the subset of RECOLA dataset [24] in Table VIII. The results showed that the proposed method exhibits a better recognition performance than conventional methods [29], [33], [35], [36]. We also visualize the spatiotemporal attention cube obtained by URAN in the RECOLA dataset in Fig. 13. Although we trained URAN without guidance of depth and thermal recording videos, our attention network founds discriminative parts well in face owing to spatial and temporal encoder-decoder architecture.

In Table IX, we also compared our method with the RNN-based approach [35] on the subset of SEWA dataset [25], which includes 34 training and 14 development videos. The results have also shown that the proposed method exhibits a better recognition performance compared to the conventional methods. We also visualize the predicted valence scores for two subjects of RECOLA and SEWA datasets in Fig. 14 and Fig. 15, respectively. The proposed models can detect the valence score especially on the peak points by demonstrating the effects of URAN.

Furthermore, we conducted an additional experiment to investigate the effectiveness of our method in categorical model in Table X. In this experiment, we used the URAN

Table VII

<table>
<thead>
<tr>
<th>Architectures</th>
<th>Method</th>
<th>RMSE</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN</td>
<td>CNN [35]</td>
<td>0.131</td>
<td>0.523</td>
<td>0.489</td>
</tr>
<tr>
<td></td>
<td>VGG-16 [75]</td>
<td>0.128</td>
<td>0.482</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>ResNet-50 [76]</td>
<td>0.125</td>
<td>0.511</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>VGG-Face-LSTM [78]</td>
<td>0.124</td>
<td>0.482</td>
<td>0.457</td>
</tr>
<tr>
<td></td>
<td>CNN + RNN (≈ 4 sec.) [35]</td>
<td>0.127</td>
<td>0.458</td>
<td>0.413</td>
</tr>
<tr>
<td></td>
<td>GG-16 [78]</td>
<td>0.128</td>
<td>0.443</td>
<td>0.409</td>
</tr>
<tr>
<td></td>
<td>LGBP-TOP + Bi-Dir. LSTM [36]</td>
<td>0.112</td>
<td>0.458</td>
<td>0.413</td>
</tr>
<tr>
<td></td>
<td>LGBP-TOP + LSTM + e-loss [33]</td>
<td>0.121</td>
<td>0.488</td>
<td>0.463</td>
</tr>
<tr>
<td></td>
<td>CNN + RNN (≈ 4 sec.) [35]</td>
<td>0.124</td>
<td>0.482</td>
<td>0.457</td>
</tr>
<tr>
<td></td>
<td>URAN</td>
<td>0.102</td>
<td>0.572</td>
<td>0.546</td>
</tr>
</tbody>
</table>

Table VIII

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline [16]</td>
<td>0.117</td>
<td>0.358</td>
<td>0.273</td>
</tr>
<tr>
<td>CNN [35]</td>
<td>0.113</td>
<td>0.426</td>
<td>0.326</td>
</tr>
<tr>
<td>CNN + RNN (≈ 1 sec.) [35]</td>
<td>0.111</td>
<td>0.501</td>
<td>0.474</td>
</tr>
<tr>
<td>CNN + RNN (≈ 4 sec.) [35]</td>
<td>0.108</td>
<td>0.544</td>
<td>0.506</td>
</tr>
<tr>
<td>LGBP-TOP + LSTM [29]</td>
<td>0.114</td>
<td>0.430</td>
<td>0.354</td>
</tr>
<tr>
<td>LGBP-TOP + Bi-Dir. LSTM [36]</td>
<td>0.105</td>
<td>0.501</td>
<td>0.346</td>
</tr>
<tr>
<td>LGBP-TOP + LSTM + e-loss [33]</td>
<td>0.121</td>
<td>0.488</td>
<td>0.463</td>
</tr>
<tr>
<td>CNN + RNN + e-loss [33]</td>
<td>0.116</td>
<td>0.556</td>
<td>0.538</td>
</tr>
<tr>
<td>URAN</td>
<td>0.102</td>
<td>0.572</td>
<td>0.546</td>
</tr>
</tbody>
</table>

Table IX

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline [18]</td>
<td>0.638</td>
<td>0.612</td>
<td>0.588</td>
</tr>
<tr>
<td>CNN [35]</td>
<td>0.564</td>
<td>0.528</td>
<td>0.500</td>
</tr>
<tr>
<td>CNN + RNN (≈ 4 sec.) [35]</td>
<td>0.501</td>
<td>0.346</td>
<td>0.354</td>
</tr>
<tr>
<td>URAN</td>
<td>0.501</td>
<td>0.346</td>
<td>0.354</td>
</tr>
</tbody>
</table>

Table X

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VielZeuf et al. [80]</td>
<td>48.60</td>
</tr>
<tr>
<td>Fan et al. [81]†</td>
<td>48.04</td>
</tr>
<tr>
<td>URAN</td>
<td></td>
</tr>
</tbody>
</table>

Note: The asterisk indicates that the results are from single VGG FACE model.
VI. CONCLUSION

In this paper, we presented MRAN for dimensional emotion recognition by jointly utilizing multi-modal color, depth, and thermal recording videos. The key idea of this approach is to combine heterogeneous modalities within unified deep networks, where discriminative and salient parts of faces were implicitly detected to boost the recognition accuracy. MRAN estimated the attentive region of temporally varying human face and the continuous emotion score effectively by leveraging 3D-CNNs. Moreover, our unified framework was implicitly learned to estimate the attention in face videos without any pixel-level annotations. We also introduced MAVFER benchmark that is more robust in a variety of environments such as illumination or skin color. An extensive experimental analysis showed the benefits of MRAN for multi-modal dimensional facial expression recognition on MAVFER benchmark and URAN achieved state-of-the-art performances on both RECOLA, SEWA and AFEW benchmarks. We believe that the results of this study will facilitate further advances in multi-modal facial expression recognition and its related tasks.

REFERENCES

depression, and a ect recognition workshop and challenge," In: AVEC, 1, 3, 9, 12

Jiyoung Lee received the B.S. degree in electrical and electronic engineering from Yonsei University, Seoul, South Korea, in 2016, where she is currently pursuing joint M.S. and Ph.D. degrees in electrical and electronic engineering. Her research interests include computer vision, affective computing, and machine learning, in particular, video understanding and emotion recognition.

Sunok Kim (M’18) received the B.S. and Ph.D. degrees from the School of Electrical and Electronic Engineering from Yonsei University, Seoul, Korea, in 2014 and 2019. Since 2019, she has been Post-Doctoral Researcher in School of Electrical and Electronic Engineering at Yonsei University. Her current research interests include 3D image processing and computer vision, in particular, stereo matching, depth super-resolution, and confidence estimation.

Seungryong Kim (M’17) received the B.S. and Ph.D. degrees from the School of Electrical and Electronic Engineering from Yonsei University, Seoul, Korea, in 2012 and 2018, respectively. From 2018 to 2019, he was Post-Doctoral Researcher in Yonsei University, Seoul, Korea. From 2019 to 2020, he has been Post-Doctoral Researcher in School of Computer and Communication Sciences at École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. Since 2020, he has been an assistant professor with the Department of Computer Science and Engineering, Korea University, Seoul. His current research interests include 2D/3D computer vision, computational photography, and machine learning.

Kwanghoon Sohn received the B.E. degree in electronic engineering from Yonsei University, Seoul, Korea, in 1983, the M.S.E.E. degree in electrical engineering from the University of Minnesota, Minneapolis, MN, USA, in 1985, and the Ph.D. degree in electrical and computer engineering from North Carolina State University, Raleigh, NC, USA, in 1992. He was a Senior Member of the Research engineer with the Satellite Communication Division, Electronics and Telecommunications Research Institute, Daejeon, Korea, from 1992 to 1993, and a Post-Doctoral Fellow with the MRI Center, Medical School of Georgetown University, Washington, DC, USA, in 1994. He was a Visiting Professor with Nanyang Technological University, Singapore, from 2002 to 2003. He is currently an Underwood Distinguished Professor with the School of Electrical and Electronic Engineering, Yonsei University. His research interests include 3D image processing and computer vision.